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Abstract: Measurements of time-resolved reflectance from a homogenous turbid medium
can be employed to retrieve the absolute values of its optical transport coefficients. However,
the uncertainty in the temporal shift of the experimentally determined instrument response
function (IRF) with respect to the real system response can lead to errors in optical property
reconstructions. Instrument noise and measurement of the IRF in a reflectance geometry can
exacerbate these errors. Here, we examine three reconstruction approaches that avoid requiring
direct measurements of photon launch times. They work by (a) fitting relative shapes of the
reflectance profile with a pre-determined constraint on the scattering coefficient, (b) calibrating
launch-time differences via a reference sample, and (c) freely fitting for the launch-time difference
within the inverse problem. Analysis methods that can place a tight bound on the scattering
coefficient can produce errors within 5-15% for both absorption and scattering at source-detector
separations of 10 and 15 mm. Including the time-shift in the fitting procedure also recovered
optical coefficients to under 20% but showed large crosstalk between extracted scattering and
absorption coefficients. We find that the uncertainty in the temporal shift greatly impacts the
reconstructed reduced scattering coefficient compared to absorption.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Time-domain diffuse optical spectroscopy (TD-DOS) measures the distribution of times-of-flight
(DTOF) of photons propagating through the sample from a source to a detector [1,2]. DTOFs are
obtained statistically using time-correlated single photon counting (TCSPC) [1,3] and several
short (picosecond) laser pulses detected using a fast single photon avalanche diode (SPAD)
[2,4,5]. TD-DOS has been widely applied for biosensing applications in diffuse optical imaging
(DOI) and diffuse reflectance spectroscopy (DRS) [4–7]. In most biomedical applications for in
vivo tissue sensing, near-infrared (NIR) light is used to provide functional (e.g., hemodynamics)
and structural (e.g., cell size/density) information about the underlying biological tissue by
quantifying the medium’s absorption coefficient µa and reduced scattering coefficient µ′s [8,9].
When acquired in the time-domain, experimental measurements are better able to decouple µa and
µ
′

s while also allowing for depth discrimination of absorption changes, compared to continuous
wave measurements [2,10].

To determine a medium’s optical properties from a measured DTOF, a theoretical (forward)
solution to the time dependent photon diffusion equation [4,11] is used iteratively as an inverse
model to fit measurements for known source-detector separations (SDS) and tissue geometries
[1,4,11]. A Green’s function approach [12,13] is used to develop an analytical solution – the
medium’s temporal point spread function (TPSF) – to an idealized delta-function input, δ(t − t0)
with t0 = 0 ns. To account for experimental temporal shapes of sources and response of detectors,
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the forward model is computed with a convolution of the TPSF and a measured Instrument
Response Function (IRF) [4,11]. The inverse problem is known to be significantly dependent on
both the shape and temporal position of the IRF [14,15]. Therefore, for accurate reconstructions,
it is critical to carefully measure both the temporal shape and absolute temporal position of the
IRF relative to the measured DTOF, for each wavelength and detector channel [14,15].

Because experimental DTOFs are fit with a forward model comprised of the convolution of the
TPSF and the IRF, it is important to know when the injected pulse enters the medium (i.e., t0 in
Fig. 1(a)). The difficulty in measuring t0 is schematically illustrated in Fig. 1. We note that the IRF
is impacted by both its temporal position t0 and shape. Each collection geometry can also produce
an IRF with a different shape due to the inclusion of a thin diffusor (Fig. 1(a) vs 1b) or from a
larger distribution of possible photon paths (Fig. 1(c)). When measured with the configuration
shown in Fig. 1(a), t0 is taken to be the peak or barycenter of the measured IRF [15]. In practice,

Fig. 1. Left column: Experimental configurations for measuring the instrument response
function (IRF) in different geometries. Right column: temporal relationships between the
measured IRF and the distribution of times-of-flight (DTOF) for photons from an arbitrary
turbid medium for each corresponding experimental configuration. (a) The ideal (best
possible) geometry for measuring the IRF – by directly coupling the source and detection
fiber. t0 represents the launch time of the incident photon pulse into the medium. (b) A
practically used configuration – by introducing attenuating and diffusing layers between
the source and detector fiber. This introduces a time delay ∆t1 relative to the configuration
in Fig. 1(a). (c) Reflectance configuration – by directing the incident pulse onto a surface
and reflecting the incidt pulse into detector. This introduces a larger time delay ∆t2, with
∆t2>∆t1.
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the configuration shown in Fig. 1(b) is used, where a strongly scattering and attenuation layer is
placed between the source and detecting fibers which introduces some small delay ∆t1, in the
barycenter of the IRF, relative to Fig. 1(a) [15]. However, in reflectance spectroscopy, custom
probes are epoxied at the sample end leading to immovable relative configurations of the source
and detector fibers. Thus, acquisition of the IRF requires collection in reflection geometry
(Fig. 1(c)) and from an appropriate reflecting material [4,15]. This increases the IRF barycenter
position by ∆t2 relative to Fig. 1(a). In order to fit a measured DTOF, knowledge of ∆t2 is needed,
and thus requires careful calibration for quantitative reconstructions [15,16].

Several approaches have been explored to analyze collected DTOFs in terms of the optical
properties as well as to quantitate functional changes and depth sensitives while limiting the
contribution from the IRF [17–20]. In addition to fitting the entire DTOF using a theoretical
model, methods for reducing the dimensionality of the collected DTOF have been developed
such as exploiting time-dependent mean partial pathlengths [21,22], integrated photon counts
in various time windows [17,23], moment analysis [17,18,20], and Fourier components of the
DTOF [24]. Moment analysis has particularly been shown as a promising technique to limit the
errors arising from IRF measurements, as those discussed above, while also being sensitive to
identifying depth-dependent absorption changes in media [17,18].

Here, we examine three approaches to reconstruct measured DTOFs without requiring direct
experimental measurements of ∆t. 1) A constrained Monte-Carlo Diffusion Theory (MC-DT)
approach that operates by shifting the DTOF and the convolved TPSF and IRF to peak at t = 0
while strongly restricting µ′s values in the inverse model. The imposed constraint on µ′s was
achieved using a recently developed technique [25] that translates the measured differences of
DTOF peak times at two different SDS from Monte-Carlo lookup tables (MCLUT) into µ′s. 2) A
calibrated-DT approach that uses a reference sample to calculate ∆t as described previously [4].
This calculated ∆t is used to shift the IRF before inverse fitting for each target phantom. 3) A
free-shift DT approach – here a third parameter ts is included to be freely fitted with µ′s and µa in
the inverse procedure. A time-variable is introduced into the DT-model to provide the TPSF for a
delta-function input at ts. Relative merits and drawbacks of each technique using performance
metrics across a large set of tissue simulating phantoms are discussed.

2. Materials and methods

2.1. Hardware

The instrumentation used for experimental measurements is as described previously [25]. Briefly,
a super-continuum laser (SC400, NKT Photonics, DK) with a pulse duration <100 ps was
spectrally filtered using a band-pass filter (SuperK VARIA, NKT Photonics, DK) with a repetition
rate of 40 MHz. Laser pulses were delivered to and collected from the sample by 400-µm
diameter optical fibers placed with center-center separation ρ and in contact with the sample
surface. The reflectance was measured using a SPAD detector (PMD-050, MPD, IT) that was
electronically coupled to a time-correlated single photonic counting (TCSPC) board (SPC-130,
Becker & Hickl, DE). The IRF was obtained in reflectance geometry by reflecting the source from
a mirror into the detecting fiber that was covered by a piece of paper, as described previously
[25]. The full-width half maximum of the IRF for each detection channel and wavelength was
measured to be less than 80 ps. A custom optical fiber probe was used that consisted of 4 colinear
optical fibers (400 µm, NA 0.22) to form 3 detection channels. Each channel had a SDS of 5, 10,
and 15 mm (measured from one fiber, at the edge of the collinear array, set to be the source).
Because our system used a single detector, the detecting fiber head was manually switched to
select for any specific SDS.



Research Article Vol. 13, No. 3 / 1 Mar 2022 / Biomedical Optics Express 1598

2.2. Phantom tests

For the measurements, a cylindrical glass container (8-cm diameter and 8-cm height) was filled
with an aqueous solution of 20% Intralipid (IL) (Sigma-Aldrich; MO, USA) and dried bovine
hemoglobin (Hb) (H3760; Sigma-Aldrich; MO, USA). Optical characterization of µ′s was taken
from the average values of the intrinsic reduced scattering coefficient of 20% IL performed by
multiple independent research groups [26,27]. The accuracy of this optical characterization was
confirmed by a comparison between experimental data of pure IL solutions and Monte Carlo
simulations [25]. The intrinsic absorption coefficient of Hb was calculated by measuring the
transmittance at four concentrations using a spectrophotometer and then extracting the intrinsic
absorption coefficient from the linear fit. The absorption coefficient of the medium was then
calculated by the intrinsic absorption coefficient along with hemoglobin’s relative mass fraction
to water and IL [26].

Two separate phantom sets with two different scattering levels were prepared by using 20 mL
of 20% IL (set 1) and 40 mL of 20% IL (set 2) mixed with 750 mL of deionized water. The
absorption coefficients in each set were independently varied by eight serial additions of ∼250
mg of dry bovine hemoglobin. For each laser wavelength used, a total of 18 different samples
of optical properties, combining nine values of (per set) µa with each set having one of two
levels of µ′s. Four laser wavelengths were used (with center wavelengths of 650 nm, 700 nm,
750 nm and 800 nm ± 5 nm) to create 72 different phantom tissue models with known optical
properties. Three repeated measurements were performed on each sample, at all available SDS
(ρ = 5, 10, 15 mm), and signals were acquired for 30 s per sample.

2.3. Data analysis

Collected DTOFs were analyzed using a known solution from diffusion theory to simulate the
TPSF in a semi-infinite homogenous medium [4,28]:

R(t) =
ν

2A

(︃
1

4πDt

)︃3/2
exp

(︃
−
ρ2

4Dt
− µaνt

)︃
×

[︃
exp

(︃
−

z2
+

4Dt

)︃
− exp

(︃
−

z2
−

4Dt

)︃]︃
(1)

where ν is the speed of light in the medium, D is the optical diffusion coefficient 1/(3(µa + µ
′
s)),

ρ is the source-detector separation, A accounts for the index mismatch between the detector
and medium [12], z+ = zs and z− = −2ze − zs with zs = 1/µ′s and ze = 2A/(3µ′s). Diffusion
theory serves as a good approximation of photon propagation when ρ is much larger than zs and
when µ′s ≫ µa [1,28]. The expression in Eq. (1) represents the medium’s response to a source
represented by a delta-function δ(t − t0)when t0 = 0, and measured as in Fig. 1(a). Experimentally
collected DTOFs represent the phantom’s response to an experimental IRF, R̃(t), which is given
by the convolution of Eq. (1) with the system’s IRF, i.e., R̃(t) = R(t) ⊗ IRF(t, t0 + ∆t) where t0
represents the photon launch time and ∆t represents a time delay in the measured IRF due to
non-ideal measurement geometries shown in Fig. 1(b) and 1(c).

As discussed in Fig. 1, the time t0 represents the photon launching time, which is typically
considered as the peak or barycenter of the measured IRF when the IRF is measured by directly
coupling the source and detecting fiber. Typically, the use of a t0 parameter in Eq. (1) is not
needed because t0 for IRF and the DTOF measurements are equal. Thus, convolution of the IRF
with R(t) puts R̃(t) on the correct time scale, relative to the DTOF. In our experiments, the IRF
was collected as shown in Fig. 1(c) (in a reflection geometry) since the fiber probe was configured
for reflectance measurements. This introduced a shift ∆t in the IRF time scale. Thus, without
knowledge of those time-shifts, R̃(t) could not be directly compared to measured DTOFs. We
consider three different procedures to recover both µ′s and µa using time-resolved reflectance
obtained at one or more SDS, that do not depend on directly requiring ∆t or t0 for reconstructions
and refer to them as (a) MC-DT (b) Calibrated-DT, and (c) Free-shift DT.
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In the MC-DT approach, both R̃(t) and the DTOF are shifted so that they peak at t = 0 ns. A
constraint is then placed on µ′s in the inverse model using a previously described approach to
estimate µ′s from relative peak-time differences with MCLUTs [25]. The fitting bound for µ′s
was calculated from the MCLUT using µa = 0.001 and 0.5 cm−1 as a lower and upper bound,
respectively given a measured ∆tmax at SDS of 5 and 10 mm. Such an approach does not require
absolute time scales as it operates on the relative difference between peak arrival times at two
SDS which is a primary requirement for this study.

The calibrated-DT approach indirectly calculates ∆t by fitting R̃(t) to a DTOF collected from a
calibration reference phantom with known optical properties [4] for which ∆t is considered a fit
parameter that minimizes the least-square error between measurements and reconstructions. A
∆t is estimated for each wavelength and SDS to shift the IRF time scale before fitting the DTOFs
from target phantoms.

In the free-shift DT approach, Eq. (1) is modified by making the replacement t → t − ts and
ts is used as an additional parameter in the inverse model to optimize for along with µ′s and µa.
This has the effect of introducing an additional parameter in the forward model that allows for
R̃(t − ts) time scale to be moved to appropriately match the DTOF.

Analysis for all three methods utilized the following procedure. Collected DTOFs and R̃(t)
were normalized by their maximum count rate, optical properties were then determined by fitting
the DTOF with R̃(t) utilizing a Levenberg-Marquardt procedure to minimize the least-square
error [4,29]. The sample was considered to have a refractive index of 1.35 to match reported
values for IL solutions [27] with an external index of refraction of 1.5 to match the glass optical
fibers. The fitting range included all count rates higher than 60% of the peak value on rising edge
of the DTOF and 0.1% on the tail. The range of optical properties in the fitting procedure was
taken to be between 1 ≤ µ

′

s ≤ 60 cm−1 and 0.001 ≤ µa ≤ 0.5 cm−1. Twenty random start values
in the described ranges were utilized in the inverse procedure, and the calculated µa and µ′s that
showed the lowest least-square error were taken as the converged optical properties. A one-way
ANOVA test was performed for the three analysis methods considering the recovered absorption
and scattering coefficients separately at each SDS. Data was averaged across all experimental
concentrations and wavelengths and a post-hoc Tukey honestly significant difference test was
performed to indicate significant differences between analysis methods.

3. Results

Example fits for the three methods (a) MC-DT, (b) Calibrated DT, and (C) Free-shift DT are
shown in Fig. 2 considering the same experimental DTOF and IRF with expected (true) optical
properties of µ′s = 11.1 cm−1 and µa = 0.19 cm−1. In the MC-DT approach (Fig. 2(a)), the IRF,
DTOF, and R̃(t) are shifted to peak at t = 0. By constraining µ′s, the MC-DT approach had the
largest residuals in fitting (R2 = 0.94) due to the poor fit at early times (before the peak). However,
it often resulted in higher accuracy in the recovered optical properties. The calibrated-DT
approach is shown in Fig. 2(b). ∆t was calculated from a solid phantom [30,31] reference and
used to shift the IRF time scale. The time scales of both the DTOF and IRF are translated so
the IRF peaks at t = 0 as shown in Fig. 2(b). A main difference between the calibrated DT and
free-shift DT is the time scales between Fig. 2(b) and 2(c). In Fig. 2(c), the time scale of the
IRF and DTOF are the same as the TCSPC measurements. The difference between the IRF and
DTOF peak times in Fig. 2(b) and 2(c) are due to not accounting for the ∆t shift in Fig. 2(c).

In Fig. 3, we show the recovered optical properties for the three methods across the entire set
of phantoms measured, at a SDS of 15 mm and illumination at 700 nm. These trends (not shown)
were similar for other wavelengths used. The top and bottom row in Fig. 3 show the 2.5% IL and
5% IL scattering levels, respectively. The left and right columns show the recovered µa and µ′s,
respectively, as functions of the true µa of the medium. In all three reconstructions, the recovered
µ′s showed largest variability while all three approaches consistently tracked linear recovery of
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Fig. 2. Example diffusion theory fits of an experimental DTOF using three different
approaches: (a) MC-DT, (b) calibrated DT, and (c) Free-shift DT. The true optical properties
are µ′s = 11.1 cm−1 and µa = 0.19 cm−1. The recovered optical properties and the sum of
squares of the residuals, R2, for each approach are listed in the figure.



Research Article Vol. 13, No. 3 / 1 Mar 2022 / Biomedical Optics Express 1601

µa. MC-DT showed the best consistency and accuracy for recovery of µ′s, given the constraints
placed on reconstructions. The calibrated-DT also consistently tracked (an unchanging) µ′s but
showed a change in slope from true values in µa. The free-shift DT method showed considerable
crosstalk between ts and µ′s (not shown), but this minimally impacted recovery of µa.

Fig. 3. Optical properties recovered at the two scattering levels for the 15 mm SDS channel
at 700 nm for the three different analysis methods. Each row represents one scattering level
for a single wavelength. The left column shows the measured µa against the true µa while
the right column shows the measured µs ′ against the true µa for the MC-DT, calibrated DT,
and free-shift DT approaches. The MC-DT had the best linearity and recovery of absolute
optical properties.

In general, all of these approaches performed better at the higher scattering level (5% IL
vs 2.5% IL) in accordance with diffusion theory serving as a better approximation in higher
scattering media. Within each scattering level, similar trends and accuracy were observed at
the four wavelengths used. In total, the absolute accuracy in recovered µa was better (< 4%
points) at 750 nm than 650 nm. However, in the phantoms, the expected absorption values at 650
nm were roughly double those at 750 nm, thus impacting accuracy of DT based analysis. All
approaches showed expected linear changes in absorption as shown in Fig. 3. The MC-DT and
free-shift DT approaches increasingly underestimated µa for larger absorption values, whereas
the calibrated DT approach systemically overestimated µa. Although the free-shift DT approach
showed the largest errors in µ′s, this did not appear to significantly affect the recovery of µa. In
most situations, the free-shift DT approach matched the accuracy of the MC-DT approach in
recovering µa while being significantly more accurate than the calibrated DT approach.

Percent errors in the absorption coefficient were calculated as δµa = 100 ×|true − measured| / |true|
and shown in Fig. 4 for the calibrated DT (sky blue), free-shift DT (orange), and MC-DT (navy)
approaches. These values represent the mean δµa across all phantoms and wavelengths used and
error bars represent the standard deviation in δµa . Large errors were noted for short SDS (ρ = 5
mm), displaying the well-known limitation of DT at such distances. The Calibrated and Free-shift
DT methods were not statistically different (p> 0.05) when ρ = 5 mm. However, all other groups
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were statistically different (p< 0.05) for each SDS when using a post-hoc Tukey HSD test. Errors
were at nearly 10% for ρ = 10 and 15 mm with the MC-DT, which is comparable to ranges
reported previously [4]. Free-shift DT was less accurate than MC-DT with δµa of 15-20% at
ρ = 10 and 15 mm. The calibrated DT approach showed the largest mean errors at 40-50%.
Surprisingly, the calibrated DT approach did not show improvements in recovery of absorption
when increasing SDS between 10 and 15 mm.

Fig. 4. Calculated percent error in the recovered absorption coefficient (δµa ) using calibrated
DT (sky blue), free-shift DT (orange) and MC-DT (navy). δµa is shown for each experimental
source-detector separation where error bars represent the standard deviation when averaging
across all wavelengths and scattering levels. Large errors are seen when ρ = 5 mm, however
δµa is ∼10% when ρ = 10 and 15 mm using MC-DT and ∼15-20% using free-shift DT. The
MC-DT approach was able to provide more accurate estimates at all SDS and wavelengths.

As noted previously, all approaches performed better at the higher scattering level (5% IL).
Although δµa for the two scattering groups from the MC-DT approach were not significantly
different, the calibrated DT approach performed better at the higher scattering level with the
free-shift approach performing similarly at each scattering level as shown in Table 1. For
ρ = 5 mm, accurate recovery of optical coefficients was not possible from any of the approaches.
Though somewhat of an improved accuracy was seen in the MC-DT approach when using lower
wavelengths (higher scattering): δµa = 26.1± 5.5 at 650 nm compared to δµa = 67.75± 6.6 at
800nm. At ρ = 10 and 15 mm, there was no significant difference between these wavelengths.

Table 1. Percent error in recovered absorption coefficients (δµa ) at two scattering levels.
δµa in the MC-DT approach had a small dependence on scattering level, whereas
calibrated DT performed significantly better at the higher scattering level (5% IL).

SDS MC-DT Free-shift DT Calibrated DT

δa (2.5% IL) δa (5% IL) δa (2.5% IL) δa (5% IL) δa (2.5% IL) δa (5% IL)

5 mm 52± 22 57± 20 156± 73 143± 68 272± 131 132± 61

10 mm 11± 4 9± 4 18± 6 15± 4 58± 15 62± 11

15 mm 6± 2 8± 2 15± 4 11± 4 112± 25 35± 8
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Figure 5 shows δµs′ averaged across all phantoms for the four wavelengths and two scattering
levels, at each SDS using calibrated DT (sky blue), free-shift DT (orange), and MC-DT (navy).
Recovered δµs′ was less than 8% across all wavelengths and SDS using MC-DT with slight
improvements at longer SDS: δµs′ = 5.6 ± 1.5 for ρ = 5 mm and δµs′ = 3.5 ± 0.8 for ρ = 15 mm.
No differences were observed amongst wavelengths within the two scattering levels.

Fig. 5. Calculated percent error in the recovered reduced scattering coefficient (δµs′) using
calibrated DT (sky blue), free-shift DT (orange) and MC-DT (navy). δµs′ is shown for each
experimental source-detector separation where error bars represent the standard deviation
when averaging across all wavelengths and scattering levels. The MC-DT approach was
able to produce accurate estimates (< 10%) for all SDS, while the free-shift DT was able to
produce estimates < 20% when ρ = 10 and 15 mm. Calibrated DT was only able to provide
accurate estimates (< 10%) at ρ = 15 mm.

On the other hand, the recovered scattering coefficient using calibrated DT only produced
accurate measurements (< 10%) of µ′s at ρ = 15 mm. The free-shift DT approach provide
reasonable estimates (< 20%) at both ρ = 10 and 15 mm. The calibrated DT and MC-DT
approach were not statistically different (p> 0.02) for ρ = 15 mm, however, each of the remaining
groups at each SDS were statistically different (p< 0.001). Recovered µ′s values were not directly
correlated to estimates of µa, as the approaches produced different estimates of µ′s for similar
values of µa. This is particularly highlighted in Fig. 3 where the free-shift DT and MC-DT
approach could produce values of µ′s 20% apart, but still yield values of µa to within 3% of each
other. Additionally, the increase in the accuracy of µ′s using the calibrated DT approach at 15
mm did not translate to any increased accuracy in recovery of µa, as seen in Fig. 4 and 5.

4. Discussion

In this work, we compared three methods: 1) MC-DT, 2) Calibrated DT, and 3) Free-shift DT to
calculate both the µs

′ and µa from experimentally collected DTOFs. These techniques worked
without knowledge of the photon launch time t0. The metric for comparisons was gauged using
percent errors of recovered optical properties from DTOFs measured in phantoms relative to
their true values. All three approaches could use a system IRF that could be measured in a
configuration different from that used to acquire the DTOFs. In other words, all three approaches
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account for an uncertainty of having a different launch time of the incident photon pulse t0
from the IRF. The calibrated and free-shift DT approaches accounted for this uncertainty with
a calibration phantom or by introducing a third time-shift ts parameter in the inverse problem,
respectively. The MC-DT approach shifted the IRF and DTOF time scale to peak at t = 0.

In Fig. 6, we show the nature of the ill-posed inverse problem in recovering the optical
coefficients using the reduced chi-squared (χ2

R) maps for each method. The χ2
R maps for each

method (MC-DT: Fig. 6(a); calibrated DT: Fig. 6(b); free-shift DT: Fig. 6(c)) were computed for an
experimentally measured DTOF from a phantom with expected optical properties µ′s = 10.2 cm−1

and µa = 0.17 cm−1 at ρ = 15 mm using the three analysis methods over a range of optical
coefficients. For the MC-DT and calibrated DT approach, χ2

R maps are shown as functions µa
and µs

′. While, for the free-shift DT approach (Fig. 6(c)), we show χ2
R as a function of all three

fitting parameters µa, µs
′, and ts.

In both Fig. 6(a) and Fig. 6(c), we can see the impact of seeking to optimize χ2
R in the

inverse space, when t0 is unknown. In the MC-DT approach this manifests with χ2
R showing

no well-defined minimum making convergence highly dependent on the initial starting values
(or constraints). In the free-shift approach, although a global minimum is present, it shows
the inherent crosstalk between ts and µs

′. It also shows why the crosstalk did not significantly
impact recovery of µa (i.e., the minimum contour mainly runs along the ts and µs

′ plane). On the
other hand, knowing t0 as with the calibrated DT approach gives a well-defined global minimum
(Fig. 6(b)). Figure 6(a) also demonstrates why a constraint on µs

′ provides stability and therefore
improved performance of the MC-DT approach.

Alternatively, as is done with the calibration-DT approach, the temporal position of the IRF
can be determined indirectly using reference standard of known optical properties [4]. Although
the approach shows clear advantage in the optimization of the inverse problem (Fig. 6(b)) it
is limited by the accuracy of the calibrated time shift. In our analyses, the calibrated-DT
approach systemically overestimated the absorption coefficient which can be explained directly
as a consequence of an inaccurate time-shift calibration. These inaccuracies can arise due to
differences in the optical properties of the reference phantom, or the method used to determine
baseline optical properties for each phantom. In our case, we used commercially given optical
properties for the reference solid phantom [31] whereas the Intralipid phantoms were determined
from averaged literature values and spectrophotometer measurements. Better results were
reported previously for the calibrated-DT based approach [4]. Imposing additional spectral
constraints on scattering coefficients when fitting calibrated time-shifts could help improve such
estimates.

Introducing a time-shift as a third (free) parameter in the fitting process offers the simplest way
to account for uncertainties in t0. However, this comes at the cost of weakening the fit (Fig. 6(c)),
increasing computational time and potentially having significant crosstalk between recovered
µs

′ and recovered time shifts [29,32]. In this study, we did not observe notable differences in
convergence time across the three methods (all three methods converged < 100 ms). For the
free-shift DT approach, we allowed ts to be shifted by a maximum of 1 ns in the modeled R̃(t − ts).
Strong crosstalk between ts and µs

′ were observed that limited the accuracy of recovered µs
′ using

this approach. However, it would be possible to further constrain ts (e.g., for known experimental
configurations) that could increase accuracy of recovered µs

′.
As shown in Fig. 6(a), shifting the time scales of the IRF and DTOF to peak at 0 creates a

highly ill-posed inverse problem. To overcome this, a constraint on µs
′ was imposed using a

previously reported technique [25]. This approach had the best accuracy in recovery of both
optical coefficients. Although the performance here was good, some limitations of this technique
are to be noted. The maxima of the DTOF has the highest photon count-rates, but the shot-noise
contribution in detector-electronics is proportional to

√
N, where N is the count-rate [33]. Thus,

determination of the peak time is prone to electronic noise and these could be exacerbated by
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Fig. 6. χ2
R distributions when fitting R̃(t) to a single DTOF plotted for the three methods:

(a) MC-DT, (b) Calibrated DT, and (c) Free-shift DT. A unique minimum is not observed in
the MC-DT approach while the calibrated DT approach produces a well-defined minimum.
Although the free-shift approach produced a minimum, there is considerable crosstalk
between µ′s and ts.
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having different count-rates for different SDS and/or transport coefficients. Further, timing
resolutions caused by photon counting jitter, can also vary across detectors. For example,
photomultiplier tubes provide timing resolutions larger than 100 ps [34] while superconducting
nanowire single-photon detectors can be under 5 ps [35]. Here, SPAD detectors were used
and signal acquisition used long integration times (of 30 s) which typically provided timing
resolutions of tens of picoseconds [36]. As the peak-time differences measured were much
larger than instrument resolution, the approach worked. However, choices of different detectors
and timing electronics can significantly impact the MC-DT approach. A similar approach as
the MC-DT used here, but based on diffusion theory and using photomultiplier tubes has been
reported previously [37]. The MC-DT approach also assumes the DTOF peak-time is equally
affected by the IRF at each detecting channel (for the 2 SDS used for the peak-time difference)
and thus could impact its extension to multi-channel systems. Finally, the MC-DT approach does
not scale well for larger µs

′ as peak-time differences map a larger range of possible µ′s values
which necessitates the use of short SDS channels that limit the sensitivity to only superficial
layers [38].

The previous discussion focused on the impact of the temporal shift of the IRF relative to
the real system response, and analysis methods to account for such uncertainty. In practice,
there are additional sources of error that can impact each of the three approaches. We have
used the well-established diffusion approximation to analyze our results, but DT can be severely
limited at the SDS studied here and at modelling early arriving photons [29]. We note that
reconstructions using DT are strongly influenced by the temporal fit range due to DT not having
uniform validity across each photon arrival time. Additionally, the shape of the IRF in addition
to the temporal position can greatly impact recovered optical properties. Non-ideal boundary
conditions between the DT modelling and the experimental system could also impact results.
Specifically, the Calibrated-DT approach had different boundary conditions when collecting
measurements on the reference solid phantom (epoxy on resin) compared to the experimental
water-based phantoms (epoxy slightly submerged in water). Finally, the influence of using shorter
integration times and therefore increasing noise levels in data was not investigated. All of these
potential sources of error can impact results.

5. Conclusion

We investigated three approaches to overcoming the difficulties in accurately measuring the
Instrument Response Function (IRF) in time-resolved reflectance spectroscopy. Particular focus
was given to overcoming the uncertainties in measuring the launch time t0 of the incident photon
pulse in reflectance geometries. We compared approaches that (a) operate by shifting the peaks
of both the measured DTOFs and theoretical forward model after convolution with the IRF
by overlapping them at t = 0, (b) calculate t0 from a reference standard with known optical
properties, and (c) introduce ts as a fitting parameter in the inverse problem.

We find that each approach has a set of unique advantages and shortcomings. When considering
the three approaches and their respective inverse problem, having accurate knowledge of t0 will
provide the most well-posed reconstruction of optical properties (Fig. 6(b) vs 6a and 6c) leading to
more accurate and reliable fitting procedures. As mentioned previously [29,32], the quantification
of µs

′ is more adversely impacted by uncertainties in t0 than µa. We show that recovery of
absolute values of optical properties is still possible from time-domain reflectance using IRF
measurements that are not exactly calibrated or that become uncalibrated in the presence of
instrumental drift over the course of an experiment. Depending on the experimental setup and
calibrations employed, accurate results can be achieved with all three methods to varying degrees.
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